Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Nutrients ; 16(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38613068

RESUMO

Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.


Assuntos
Erigeron , Osteoartrite , Animais , Camundongos , Ratos , Projetos de Pesquisa , Anti-Inflamatórios não Esteroides , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia
2.
Planta ; 259(5): 98, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522041

RESUMO

MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.


Assuntos
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Ácidos Indolacéticos , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transformação Genética
3.
Chemosphere ; 354: 141732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499072

RESUMO

Malignant invasive Erigeron canadensis, as a typical lignocellulosic biomass, is a formidable challenge for sustainable and efficient resource utilization, however nanobubble water (NBW) coupled with anaerobic digestion furnishes a prospective strategy with superior environmental and economic effectiveness. In this study, influence mechanism of various O2-NBW addition times on methanogenic performance of E. canadensis during anaerobic digestion were performed to achieve the optimal pollution-free energy conversion. Results showed that supplementation of O2-NBW in digestion system could significantly enhance the methane production by 10.70-16.17%, while the maximum cumulative methane production reached 343.18 mL g-1 VS in the case of one-time O2-NBW addition on day 0. Furthermore, addition of O2-NBW was conducive to an increase of 2-90% in the activities of dehydrogenase, α-glucosidase and coenzyme F420. Simultaneously, both facultative bacteria and methanogenic archaea were enriched as well, further indicating that O2-NBW might be responsible for facilitating hydrolytic acidification and methanogenesis. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) cluster analysis, provision of O2-NBW enhanced the metabolism of carbohydrate and amino acid, translation as well as membrane transport of bacteria and archaea. This study might offer the theoretical guidance and novel insights for efficient recovery of energy from lignocellulosic biomass on account of O2-NBW adhibition in anaerobic digestion system, progressing tenor of carbon-neutral vision.


Assuntos
Erigeron , Anaerobiose , Água , Bactérias , Archaea , Suplementos Nutricionais , Metano , Reatores Biológicos , Esgotos/química
4.
J Pharm Biomed Anal ; 242: 116058, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422673

RESUMO

AIM: Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) granules is the extract preparation of EB, with clear curative effect and unclear mechanism. This study intends to systematically explore the specific mechanism of EB granules in the treatment of IS from the metabolic perspective. METHODS: The model of transient middle cerebral artery occlusion (tMCAO) in mice was established by the suture-occluded method. The therapeutic effect of EB granules on tMCAO mice was evaluated by behavioral evaluation, brain water content determination, 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and levels of lactate dehydrogenase (LDH) and neuron specific enolase (NSE) in serum. In order to screen differential metabolites, non-targeted metabolomics technology was used to detect the metabolites in serum before and after administration. Univariate statistics, multivariate statistics and bioinformatics were used to analyze the changes of metabolites in serum of tMCAO mice. The possible related mechanism of EB granules in treating IS was screened by pathway enrichment analysis, and the preliminary verification was carried out at animal level by enzyme linked immunosorbent assay (ELISA) and western blot (WB). RESULTS: EB granules could significantly improve behavior of tMCAO mice, reduce brain water content and cerebral infarction volume, improve morphology of brain tissue, reduce the levels of LDH and NSE in serum. A total of 232 differential metabolites were screened, which were mainly enriched in many biological processes such as sphingolipid metabolism. The differential metabolite S1P and its receptors S1PR1 and S1PR2 in sphingolipid metabolism were verified. The results showed that the level of S1P in brain tissue increased and the protein expression of S1PR1 decreased significantly after modeling, and reversed after administration, but there was no significant difference in the protein expression of S1PR2. CONCLUSION: The therapeutic effects of EB granules may be related to affecting sphingolipid metabolism through regulating S1P/S1PR1.


Assuntos
Isquemia Encefálica , Erigeron , AVC Isquêmico , Camundongos , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Água , Esfingolipídeos/uso terapêutico
5.
Nutrients ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337735

RESUMO

Atopic dermatitis (AD) is a persistent inflammatory skin condition resulting from an intricate interplay among genetic, immunological, and environmental factors. Erigeron annuus (EA), an annual winter plant belonging to the family Asteraceae, possesses anti-inflammatory, cytoprotective, and antioxidant activities. In this study, we hypothesized that Erigeron annuus extract (EAE) could be an effective agent for ameliorating AD-like symptoms. To confirm this hypothesis in vitro, we used H2O2-stimulated human keratinocytes (HaCaT cells) to demonstrate that pre-treatment with EAE protected against oxidative stress. HaCaT cells pretreated with EAE and stimulated with H2O2 showed decreased intracellular malondialdehyde content, increased superoxide dismutase activity, and reduced intracellular reactive oxygen species accumulation. To verify the in vivo hypothesis based on the intracellular results, an AD disease mouse model was induced with 1-chloro-2,4-dinitrobenzene (DNCB), and EAE was orally administered at a non-toxic concentration according to the toxicity evaluation results. The results showed that AD disease models in BALB/c mice exhibited reduced ear epidermal thickness, scratching behavior, and mast cell infiltration. In conclusion, our results indicate that EAE has the potential to improve AD by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway.


Assuntos
Dermatite Atópica , Erigeron , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Pele/metabolismo , Dinitroclorobenzeno/toxicidade , Erigeron/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dinitrobenzenos/efeitos adversos , Dinitrobenzenos/metabolismo , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
6.
Sci Rep ; 14(1): 4698, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409467

RESUMO

Erigeron annuus (EA), traditionally used to treat disorders such as diabetes and enteritis, contains a variety of chemicals, including caffeic acid, flavonoids, and coumarins, providing antifungal and antioxidative benefits. However, the ingredients of each part of the EA vary widely, and there are few reports on the functionality of water extracts in skin inflammation and barrier protection. We assessed the therapeutic properties of the extract of EA without roots (EEA) and its primary ingredient, pyromeconic acid (PA), focusing on their antihistamine, anti-inflammatory, and antioxidative capabilities using HMC-1(human mast cells) and human keratinocytes (HaCaT cells). Our findings revealed that histamine secretion, which is closely related to itching, was notably reduced in HMC-1 cells following pretreatment with EEA (0.1% and 0.2%) and PA (corresponding concentration, 4.7 of 9.4 µg/mL). Similarly, they led to a marked decrease in the levels of pro-inflammatory cytokines, including IL-1ß, IL-8, IL-6, and IFN-γ. Furthermore, EA and PA enhanced antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT), reduced malondialdehyde (MDA) production, and showed reactive oxygen species (ROS) scavenging activity in HaCaT cells. Moreover, at the molecular level, elevated levels of the pro-inflammatory cytokines IL-1ß, IL-6, TARC, and MDC induced by TNF-α/IFN-γ in HaCaT cells were mitigated by treatment with EEA and PA. We also revealed the protective effects of EEA and PA against SDS-induced skin barrier dysfunction in HaCaT cells by enhancing the expression of barrier-related proteins. Using NanoString technology, a comprehensive analysis of gene expression changes indicated significant modulation of autoimmune and inflammatory genes by EEA and PA. In summary, this study suggests that EEA and the corresponding concentration of PA as an active ingredient have functional cosmetic applications to alleviate itching and improve skin health.


Assuntos
Cromonas , Erigeron , Humanos , Interleucina-6/metabolismo , Linhagem Celular , Anti-Inflamatórios/química , Citocinas/metabolismo , Queratinócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/química , Prurido/metabolismo
7.
Inflammopharmacology ; 32(2): 1091-1112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294617

RESUMO

Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has historically been used to treat head and brain diseases. Alzheimer's disease (AD) is the most widespread form of dementia initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC-ESI-MS analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC-ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathological alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated OVX/D-Gal-induced Aß aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, IL-1ß), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expression, down-regulating GSK-3ß and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.


Assuntos
Doença de Alzheimer , Erigeron , Fármacos Neuroprotetores , Ratos , Feminino , Animais , Ratos Wistar , Galactose/efeitos adversos , Cromatografia Líquida de Alta Pressão , Fosfatidilinositol 3-Quinases , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
8.
Nat Prod Res ; 38(5): 807-812, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37070421

RESUMO

Three new compounds (1-2, 4) along with ten known ones (3, 5-13), were isolated from the whole plant of Erigeron breviscapus. Compounds 1 and 2, two novel C10 acetylenic acids and compound 4, a jasmone glucoside were elucidated by the detailed analysis of 1D and 2D NMR, HRESIMS spectra, and experimental and calculated electronic circular dichroism (ECD). Compounds 1-3 represent the first example of acetylenic acids incorporating C10 skeleton from E. breviscapus. In addition, the antioxidant effects of all compounds were evaluated by ferric reducing power, 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate acid) (ABTS) and 2.2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Our results indicated the significant antioxidant activity of caffeoylquinic acids. Additionally, compounds 10-11 and 13 played protective role on alcoholic liver injury cells in a dose-dependent manner.


Assuntos
Erigeron , Erigeron/química , Antioxidantes/farmacologia , Antioxidantes/química , Fígado
9.
J Ethnopharmacol ; 319(Pt 2): 117310, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37827296

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erigeron breviscapus is a common medicine of eight ethnic minorities, including Miao, Naxi, and Yi. As early as the Ming Dynasty (AD 1368-1644), Lanmao's Materia Medica of Southern Yunnan (AD 1436) recorded that the medicine is used for the treatment of "Zuo tan you huan." In modern pharmacological research, Erigeron breviscapus injection is the most commonly used preparation in the treatment of ischemic stroke caused by acute cerebral infarction, but its mechanism of action in the treatment of ischemic stroke is not well understood. AIM OF THE STUDY: In this study, a metabonomics study based on ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was used in investigating the effect of a traditional Chinese medicine preparation Erigeron breviscapus injection on the rat model of focal cerebral ischemia-reperfusion and the affinity of its main components with the targets of mitochondrial apoptotic pathways. MATERIALS AND METHODS: This study used molecular docking technology to verify the effective binding ability of main effective components of Erigeron breviscapus injection to target proteins related to mitochondrial apoptosis pathway. This study developed a metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of focal cerebral ischemia-reperfusion model group and healthy control group was achieved. RESULTS: Erigeron breviscapus injection can significantly reduce the area of cerebral infarction, improve tissue morphological lesion in rats, and can increase the number of Nissl bodies. It may be a promoting factor by inhibiting hippocampal nerve cell apoptosis and Bax protein expression and by exerting effects against ischemia reperfusion after the induction of apoptosis. Thus, it plays a role in brain protection. Moreover, it can considerably promote the recovery of neurological deficiency signs in advance. Meanwhile, Erigeron breviscapus decreased malondialdehyde content and T-NOS activity. Its curative effect from strong to weak order: low dose > high dose > medium dose. The representative components of Erigeron breviscapus have good affinity with the active sites of mitochondrial apoptosis-related proteins. Metabolomics found that the potential biomarkers regulated by breviscapine are kynurequinolinic acid, succinylornithine, and leucine proline. It is speculated that it may participate in TRP-kynurequinolinic acid and succinylornithine-urea cycle-NO metabolic pathways. CONCLUSIONS: This paper revealed the potential biomarkers and metabolic pathways regulated by Erigeron breviscapus. It was speculated that the mechanism is related to its inhibition of mitochondrion-mediated apoptosis. Erigeron breviscapus could restore the metabolic profiles of the model animals to normal animal levels. The mechanism may be related to the potential biomarkers of quinolinic acid, succinylornithine, and leucine proline and the metabolic pathways involved. However, the exact mechanism by which Erigeron breviscapus inhibits mitochondrion-mediated apoptosis remains to be further explored.


Assuntos
Isquemia Encefálica , Erigeron , AVC Isquêmico , Traumatismo por Reperfusão , Ratos , Animais , Erigeron/química , Simulação de Acoplamento Molecular , Leucina/uso terapêutico , China , Metabolômica/métodos , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Espectrometria de Massas em Tandem , Infarto Cerebral , Biomarcadores , Prolina , Cromatografia Líquida de Alta Pressão
10.
PLoS One ; 18(10): e0263154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824594

RESUMO

The effect of paraquat, oxadiazon and oxyfluorfen herbicides was tested on two populations of hairy fleabane (Erigeron bonariensis L.), collected from a date palm orchard at Tal al-Ramil (Central Jordan Valley) and al-Twal (Northern Jordan Valley) sites using the recommended rates (0.5, 1.25 and 0.792kg a.i ha-1 for each herbicide, respectively) and 10-fold (5, 12.50 and 7.92 kg a.i. ha-1, respectively) under glasshouse conditions. Results showed that the date palm weed population was resistant to the three herbicides at both application rates and al-Twal site population was highly susceptible. Two field experiments were conducted to evaluate the effectiveness of 12 herbicides in controlling the weed in the date palm orchard during the spring of 2017, revealed that E. bonariensis resists paraquat (0.5, 1.0 and 1.5 kg a.i. ha-1), oxadiazon (1.25 kg a.i. ha-1) and oxyfluorfen (0.792 kg a.i. ha-1) herbicides. None of the three herbicides was effective against the weed and treated plants continued to grow normally similar to those of untreated control. Ten-fold higher rates of these herbicides failed to control the weed. The effect of other tested herbicides was variable with bromoxynil plus MCPA (buctril®M), 2,4-D- iso-octyl ester, glyphosate, glyphosate trimesium and triclopyr being the most effective and completely controlling the weed at recommended rates of application. It is concluded that the tested populations of E. bonariensis developed resistance to paraquat, oxadiazon and oxyfluorfen but control of the weed was possible using other herbicides with different mechanisms of action. Herbicide rotation or other nonchemical weed control methods have been suggested to prevent or reduce the buildup and spread of resistant populations of this weed. These results represent the first report of herbicide resistance of E. bonariensis in Jordan.


Assuntos
Conyza , Erigeron , Herbicidas , Paraquat/farmacologia , Resistência a Herbicidas , Jordânia , Herbicidas/farmacologia , Controle de Plantas Daninhas/métodos
11.
BMC Genomics ; 24(1): 402, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460954

RESUMO

Self-incompatibility (SI) is a reproductive protection mechanism that plants acquired during evolution to prevent self-recession. As the female determinant of SI specificity, SRK has been shown to be the only recognized gene on the stigma and plays important roles in SI response. Asteraceae is the largest family of dicotyledonous plants, many of which exhibit self-incompatibility. However, systematic studies on SRK gene family in Asteraceae are still limited due to lack of high-quality genomic data. In this study, we performed the first systematic genome-wide identification of S-locus receptor like kinases (SRLKs) in the self-incompatible Asteraceae species, Erigeron breviscapus, which is also a widely used perennial medicinal plant endemic to China.52 SRLK genes were identified in the E. breviscapus genome. Structural analysis revealed that the EbSRLK proteins in E. breviscapus are conserved. SRLK proteins from E. breviscapus and other SI plants are clustered into 7 clades, and the majority of the EbSRLK proteins are distributed in Clade I. Chromosomal and duplication analyses indicate that 65% of the EbSRLK genes belong to tandem repeats and could be divided into six tandem gene clusters. Gene expression patterns obtained in E. breviscapus multiple-tissue RNA-Seq data revealed differential temporal and spatial features of EbSRLK genes. Among these, two EbSRLK genes having high expression levels in tongue flowers were cloned. Subcellular localization assay demonstrated that both of their fused proteins are localized on the plasma membrane. All these results indicated that EbSRLK genes possibly involved in SI response in E. breviscapus. This comprehensive genome-wide study of the SRLK gene family in E. breviscapus provides valuable information for understanding the mechanism of SSI in Asteraceae.


Assuntos
Erigeron , Erigeron/genética , Erigeron/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , China
12.
Nutrients ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375588

RESUMO

Diabetes is a prevalent and debilitating metabolic disorder affecting a large population worldwide. The condition is characterized by insulin resistance and impaired function of pancreatic ß-cells, leading to elevated blood glucose levels. In this study, the antidiabetic effects of Erigeron annuus extract (EAE) on zebrafish with damaged pancreatic islets caused by insulin resistance were investigated. The study utilized the zebrafish model to monitor live pancreatic islets. RNA sequencing was also conducted to determine the mechanism by which EAE exerts its antidiabetic effect. The results showed that EAE was effective in recovering reduced islets in excess insulin-induced zebrafish. The effective concentration at 50% (EC50) of EAE was determined to be 0.54 µg/mL, while the lethal concentration at 50% (LC50) was calculated as 202.5 µg/mL. RNA sequencing indicated that the mode of action of EAE is related to its ability to induce mitochondrial damage and suppress endoplasmic reticulum stress. The findings of this study demonstrate the efficacy and therapeutic potential of EAE in treating insulin resistance in zebrafish. The results suggest that EAE may offer a promising approach for the management of diabetes by reducing mitochondrial damage and suppressing endoplasmic reticulum stress. Further research is required to establish the clinical application of EAE in diabetic patients.


Assuntos
Erigeron , Resistência à Insulina , Células Secretoras de Insulina , Animais , Peixe-Zebra , Erigeron/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Estresse do Retículo Endoplasmático , Hipoglicemiantes/farmacologia
13.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2331-2346, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37178275

RESUMO

Erigeron annuus L. is a flowering herb of North America, Europe, Asia and Russia. This plant is used as folk medicine in China for the cure of indigestion, enteritis, epidemic hepatitis, haematuria and diabetes. Phytochemical studies showed the presence of 170 bioactive compounds like coumarins, flavonoids, terpenoids, polyacetylenic compounds; γ-pyrone derivatives, sterols and various caffeoylquinic acids derived from the essential oil and organic extracts from its various parts such as aerial parts, roots, leaves, stems and flowers. The pharmacological studies demonstrated various extracts and the compounds of E. annuus to exhibit anti-fungal, anti-atherosclerosis, anti-inflammatory, antidiabetic, phytotoxic, cytoprotective, antiobesity and antioxidant activities. This article covers a critical compendious on geographical distribution, botanical description, phytochemistry, ethnomedicinal uses and pharmacological activities of E. annuus. However, further in-depth studies are needed to determine the medical uses of E. annuus and its chemical constituents, pharmacological activities and clinical applications.


Assuntos
Erigeron , Medicina Tradicional , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta , Fitoterapia
14.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982685

RESUMO

Erigeron breviscapus is an important medicinal plant with high medicinal and economic value. It is currently the best natural biological drug for the treatment of obliterative cerebrovascular disease and the sequela of cerebral hemorrhage. Therefore, to solve the contradiction between supply and demand, the study of genetic transformation of E. breviscapus is essential for targeted breeding. However, establishing an efficient genetic transformation system is a lengthy process. In this study, we established a rapid and efficient optimized protocol for genetic transformation of E. breviscapus using the hybrid orthogonal method. The effect of different concentrations of selection pressure (Hygromycin B) on callus induction and the optimal pre-culture time of 7 days were demonstrated. The optimal transformation conditions were as follows: precipitant agents MgCl2 + PEG, target tissue distance 9 cm, helium pressure 650 psi, bombardment once, plasmid DNA concentration 1.0 µg·µL-1, and chamber vacuum pressure 27 mmHg. Integration of the desired genes was verified by amplifying 1.02 kb of htp gene from the T0 transgenic line. Genetic transformation of E. breviscapus was carried out by particle bombardment under the optimized conditions, and a stable transformation efficiency of 36.7% was achieved. This method will also contribute to improving the genetic transformation rate of other medicinal plants.


Assuntos
Transtornos Cerebrovasculares , Erigeron , Plantas Medicinais , Erigeron/genética , Plantas Medicinais/genética , Melhoramento Vegetal , Transformação Genética
15.
Chemosphere ; 326: 138490, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965533

RESUMO

A practical measure of soil pollution can effectively control the utilization of contaminated soil during the remediation process. In this study, Erigeron breviscapus was used as the experimental material. Soil polluted with high concentrations of cadmium (Cd) was used to study the effects of different doses of attapulgite (AP) (0, 10, 20, and 40 kg-1 for AP0, AP10, AP20, and AP40, respectively) on the yield and quality of E. breviscapus (as measured by scutellarin), as well as soil remediation. The results showed that the yield and scutellarin content of E. breviscapus decreased by 33.4% and 78.9%, respectively, in soil contaminated with high concentrations of Cd (AP0) compared with the control soil (without Cd added). Moreover, the yield increased by 48.0% and 10.6% in AP20 and AP40, respectively, compared with AP0, and the scutellarin content increased by a factor of 2.35-2.41 in AP10, AP20, and AP40. Compared with AP0, the soil Cd content decreased by 22.5-26.2% in AP10, AP20, and AP40 and the available Cd content and acid-extractable Cd fraction in the soil also decreased. The catalase, peroxidase, superoxide dismutase activities, chlorophyll, and Fe2+ content were increased in AP10, AP20, and AP40, leading to an increased yield and scutellarin content. Overall, AP20 had the best effect on the yield, quality of E. breviscapus, and soil remediation. This study provides a practical measure to consider for concurrent benefits of pollution remediation and utilization of Cd-contaminated soil.


Assuntos
Erigeron , Poluentes do Solo , Cádmio/análise , Poluição Ambiental , Solo , Poluentes do Solo/análise
16.
J Ethnopharmacol ; 300: 115691, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087844

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Erigeron breviscapus (Vant.) Hand.-Mazz.,a Chinese herbal medicine with multiple pharmacological effects and clinical applications, has been traditionally used in the treatment of paralysis caused by stroke and joint pain from rheumatism by the Yi minority people of Southwest China for generations.However, its mechanism involves many factors and has not been fully clarified. AIM OF THE STUDY: Taking intestinal flora as the target, the protective effect of extract(breviscapine) of E. breviscapus on cerebral ischemia and its possible mechanism were discussed from the perspective of brain inflammatory pathway and intestinal CYP3A4, which depends on intestinal flora. MATERIALS AND METHODS: In this study, we first verified the binding ability between major active ingredient of Erigeron breviscapus and the core target TLR4 protein by molecular docking using Vina software.We established a rat model of cerebral ischemia-reperfusion injury in vivo.The neurological function of rats was scored by Bederson score table, the cerebral infarction volume was detected by TTC staining, and the serum NSE level was detected by ELASA. 16S rRNA sequencing was used to detect the intestinal flora of rats in each group.The expression levels of cerebral TLR4/MyD88/NF-κB and CYP3A4 mRNA and protein in different intestinal segments were detected by qRT-PCR and Western blot. RESULTS: Compared with the model group, the neurological injury score, infarct volume and serum NSE concentration of breviscapine low, medium and high dose groups and nimodipine groups decreased significantly. Meanwhile, breviscapine could significantly reduce the expression level of the TLR4/MyD88/NF-κB in brain tissue and CYP3A4 in different intestinal segments of rats with cerebral ischemia-reperfusion injury. In addition, breviscapine also significantly ameliorated intestinal flora dysbiosis of rats with cerebral ischemia-reperfusion injury. CONCLUSIONS: Breviscapine can protect rats from cerebral ischemia-reperfusion injury by regulating intestinal flora, inhibiting brain TLR4/MyD88/NF-κB inflammatory pathway and intestinal CYP3A4 expression.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Erigeron , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Erigeron/genética , Erigeron/metabolismo , Flavonoides , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Nimodipina/farmacologia , RNA Mensageiro/metabolismo , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
17.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500342

RESUMO

Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans are traditionally used plants grown in Turkey. Methanol extracts were obtained from these plants and pharmacological activity studies and phytochemical analyses were carried out. To evaluate the phytochemical composition, spectrophotometric and chromatographic techniques were used. The extracts were evaluated for antioxidant activity by DPPH●, ABTS●+ radical scavenging, and FRAP assays. The cytotoxic effects of the extracts were investigated on DU145 prostate cancer and A549 lung cancer cell lines. The anti-inflammatory effects of extracts were investigated on the NO amount, TNF-α, IFN-γ, and PGE 2 levels in lipopolysaccharide-stimulated Raw 264.7 cells. The richest extract in terms of phenolic compounds (98.19 ± 1.64 mgGAE/gextract) and total flavonoids (21.85 ± 0.64 mgCA/gextract) was identified as C. pichleri subsp. pichleri methanol extract. According to antioxidant activity determinations, the C. pichleri subsp. pichleri extract was found to be the most active extract. Finally, the C. pichleri subsp. pichleri methanol extract was revealed to be the most effective inhibitor of viability in the cytotoxic activity investigation, and the extract with the best anti-inflammatory action. The findings point to C. pichleri subsp. pichleri as a promising source of bioactive compounds in the transition from natural sources to industrial uses, such as new medications, cosmeceuticals, and nutraceuticals.


Assuntos
Centaurea , Conyza , Erigeron , Oleaceae , Plantas Medicinais , Antioxidantes/química , Centaurea/química , Plantas Medicinais/química , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios/farmacologia
18.
BMC Genomics ; 23(1): 778, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443662

RESUMO

Cadmium (Cd) is a highly toxic pollutant in soil and water that severely hampers the growth and reproduction of plants. Phytoremediation has been presented as a cost-effective and eco-friendly method for addressing heavy metal pollution. However, phytoremediation is restricted by the limited number of accumulators and the unknown mechanisms underlying heavy metal tolerance. In this study, we demonstrated that Erigeron canadensis (Asteraceae), with its strong adaptability, is tolerant to intense Cd stress (2 mmol/L CdCl2 solution). Moreover, E. canadensis exhibited a strong ability to accumulate Cd2+ when treated with CdCl2 solution. The activity of some antioxidant enzymes, as well as the malondialdehyde (MDA) level, was significantly increased when E. canadensis was treated with different CdCl2 solutions (0.5, 1, 2 mmol/L CdCl2). We found high levels of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities under 1 mmol/L CdCl2 treatment. Comparative transcriptomic analysis identified 5,284 differentially expressed genes (DEGs) in the roots and 3,815 DEGs in the shoots after E. canadensis plants were exposed to 0.5 mM Cd. Functional annotation of key DEGs indicated that signal transduction, hormone response, and reactive oxygen species (ROS) metabolism responded significantly to Cd. In particular, the DEGs involved in auxin (IAA) and ethylene (ETH) signal transduction were overrepresented in shoots, indicating that these genes are mainly involved in regulating plant growth and thus likely responsible for the Cd tolerance. Overall, these results not only determined that E. canadensis can be used as a potential accumulator of Cd but also provided some clues regarding the mechanisms underlying heavy metal tolerance.


Assuntos
Asteraceae , Erigeron , Cádmio/toxicidade , Perfilação da Expressão Gênica , Transcriptoma , Antioxidantes
19.
Am J Bot ; 109(10): 1641-1651, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36112611

RESUMO

PREMISE: Parthenogenesis is the capacity of organisms to develop embryos from unfertilized eggs. When parthenogenesis is coupled with unreduced gamete formation (apomeiosis), genetically maternal progeny result. Genetic elucidation of this form of reproduction in plants, apomixis, has important agronomic implications. However, genetic characterization of apomeiosis and parthenogenesis has been problematic in part because the traits usually co-occur and are restricted to polyploids. In this work, the inheritance of parthenogenetic embryo development, by itself, was studied at the diploid level. METHODS: Progeny resulting from a cross between a diploid (2n = 18), heterozygous, parthenogenetic pollen donor, and a diploid, wildtype, sexual seed parent were evaluated. Paternity was tested with conserved orthologous sequence (COS) markers, reproductive development of F1s was evaluated with microscopy of cleared ovules, and an amplified fragment length polymorphism (AFLP) marker (Eagc × Macg.615) co-segregating with parthenogenesis was characterized at the sequence level. RESULTS: Of 102 diploid biparental progeny, 47 exhibited parthenogenetic embryo and endosperm development, and 55 lacked development of the egg and central cell. This result is consistent with Mendelian inheritance for a single locus (P = 0.43). Isolation and sequencing of the AFLP marker indicates that it is likely a portion of a Ty-Gypsy retrotransposon. Attempts to develop a sequence-characterized amplified region marker from the AFLP were unsuccessful. CONCLUSIONS: This work shows that parthenogenesis can be transmitted simply at the diploid level. This advance is key in the development of a tractable system in Erigeron aimed at the identification of the parthenogenesis locus using genetic mapping strategies.


Assuntos
Erigeron , Magnoliopsida , Diploide , Erigeron/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Magnoliopsida/genética , Partenogênese/genética , Desenvolvimento Embrionário
20.
J Antibiot (Tokyo) ; 75(10): 589-592, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986093

RESUMO

Biosurfactants have been widely used in various industrial fields including medicine, food, cosmetics, detergent, pulp and paper, and oil and fat degradation. The culture broth of Aureobasidium pullulans A11211-4-57 using glucose as carbon source exhibited potent surfactant activity. The culture broth was separated by column chromatographies using ODS, silica gel, and Sephadex LH-20 resins, consecutively, to provide two biosurfactants. Based on mass and NMR measurements, their structures were determined as myo-inositol lipids and named pullusurfactans F and G. These compounds showed a high degree of activity, with 27.25 mN/m and 24.07 mN/m, respectively, at 1.0 mg l-1, which is useful for washing and cleaning agents.


Assuntos
Ascomicetos , Erigeron , Ascomicetos/metabolismo , Aureobasidium , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...